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1  | INTRODUC TION

Mounting evidence suggests that epigenetic changes may play im-
portant roles in organismal responses to spatial and temporal en-
vironmental variation, yet we still know little about how epigenetic 
variation is distributed within and among populations in natural 
systems (Foust et al., 2016; Herrera, Medrano, & Bazaga, 2016; Hu 
& Barrett, 2017; Schmid et al., 2018; Verhoeven, vonHoldt, & Sork, 
2016). DNA methylation, the most commonly studied epigenetic 
modification, is closely linked to the environment in two important 

ways. First, environmental stimuli can induce intragenerational epi-
genetic changes, and environmentally induced methylation can vary 
under different environmental conditions, both genome-wide and at 
specific loci (Dowen et al., 2012; Metzger & Schulte, 2017; Putnam, 
Davidson, & Gates, 2016). Second, DNA methylation can affect 
gene expression and therefore contribute to phenotypic plasticity 
across different environments (Artemov et al., 2017; Greenspoon & 
Spencer, 2018; Jaenisch & Bird, 2003). These two mechanisms can 
also be related—for instance, evidence suggests that environmen-
tally induced DNA methylation may underlie a portion of normal 
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alized dissimilarity modelling and multiple matrix regression, we found that genome-
wide epigenetic differentiation is strongly correlated with environmental divergence, 
even after controlling for the underlying genetic structure. We also detected signifi-
cant associations between key environmental variables and 96 SMVs, including 42 lo-
cated in promoter regions or gene bodies. Our results suggest an environmental basis 
for population-level epigenetic differentiation in this system and contribute to better 
understanding how environmental gradients structure epigenetic variation in nature.
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phenotypic plasticity and physiological responses to different envi-
ronments (Artemov et al., 2017; Dowen et al., 2012; Jaenisch & Bird, 
2003; Rubenstein et al., 2016). Hence, epigenetic variation should 
be closely tied to environmental variation, and a variety of spatial 
processes can shape epigenetic profiles.

However, patterns of epigenetic variation should also, at least 
to some extent, reflect underlying patterns of genetic variation 
(Dubin et al., 2015; Foust et al., 2016; Herrera et al., 2016). Because 
of epigenetic inheritance, the same processes that contribute to 
generating spatial patterns of genetic structure can act on epigen-
etic variation as well—epigenetic alleles (“epialleles”) should move 
between populations with gene flow (Herrera et al., 2016; Herrera, 
Medrano, & Bazaga, 2017), and random drift in isolation could re-
duce epigenetic variance within populations (Richards, Bossdorf, 
& Verhoeven, 2010; Trucchi et al., 2016). However, epigenetic in-
heritance is imperfect, meaning that epigenetic variation is “reset” 
to some degree between generations (Angers, Castonguay, & 
Massicotte, 2010; Jablonka & Raz, 2009; Schmitz et al., 2013), and 
rates of change in epigenetic markers (“epimutations”) are expected 
to be higher than genetic mutation rates (Angers et al., 2010; Jiang, 
Mithani, et al., 2014; Trucchi et al., 2016). So, ostensibly, population 
processes can lead to patterns of epigenetic isolation by distance 
(IBD), and differences between genetic IBD and epigenetic IBD can 
be attributed to processes acting on epigenetic, but not genetic, 
variation (Herrera et al., 2016).

Theoretically, then, various ecological and evolutionary pro-
cesses can also generate patterns of epigenetic isolation by envi-
ronment, the correlation of epigenetic and environmental distances 
(Herrera et al., 2017). As with genetic isolation by environment (IBE; 
Sexton, Hangartner, & Hoffmann, 2014; Wang & Bradburd, 2014), 
epigenetic IBE could result from biased dispersal (Wang & Bradburd, 
2014) or selection against migrants from divergent environments 
(Herrera et al., 2017; Sexton et al., 2014), if either is influenced by 
phenotypes affected by epigenetic variation. In both cases, reduced 
dispersal between different environments would lead to neutral di-
vergence in epigenetic profiles through epigenetic drift (Richards 
et al., 2010; Trucchi et al., 2016). Additionally, because epigene-
tic changes can be environmentally induced (Angers et al., 2010; 
Radford et al., 2014; Verhoeven et al., 2016), epigenetic profiles may 
diverge between environments if different conditions contribute to 
differentially induced effects (Dowen et al., 2012; Dubin et al., 2015; 
Herman, Spencer, Donohue, & Sultan, 2014). These differences 
could be heritable or re-induced every generation, and epigenetic 
IBE could result under this scenario with no differences in fitness. 
Indeed, a few studies have now demonstrated local adaptation re-
lated to epigenetic variation (e.g., Alakärppä et al., 2018; Dubin et 
al., 2015; He et al., 2018; Platt, Gugger, Pellegrini, & Sork, 2015) 
and close associations between epigenetic variants and environ-
mental gradients in a variety of natural systems (e.g., Foust et al., 
2016; Gugger, Fitz-Gibbon, Pellegrini, & Sork, 2016; Keller, Lasky, 
& Yi, 2016). Others, however, have found overall conservation of 
epigenetic profiles between populations inhabiting very different 
conditions, suggesting molecular or developmental constraints on 

epigenetic variation (e.g., Trucchi et al., 2016). So, when and where 
patterns of epigenetic IBE emerge and what environmental factors 
are involved remain open questions, and studies comparing spatial 
patterns of genetic and epigenetic variation across heterogeneous 
landscapes are powerful for quantifying the signatures of epigenetic 
responses to environmental variation (Foust et al., 2016; Gugger et 
al., 2016; Herrera et al., 2016; Schmitz et al., 2013).

Here, we examine spatial genetic and epigenetic variation in 
the Puerto Rican crested anole (Anolis cristatellus), from eight pop-
ulations distributed across a wide range of habitats, to identify the 
geographical and environmental factors contributing to population 
divergence. This species exhibits genetic IBD and IBE (Wang, Glor, 
& Losos, 2013), environmentally structured morphological variation 
(Gunderson, Siegel, & Leal, 2011; Leal & Fleishman, 2004; Winchell, 
Reynolds, Prado-Irwin, Puente-Rolón, & Revell, 2016), and phe-
notypic plasticity in response to local climate conditions (Kolbe, 
VanMiddlesworth, Losin, Dappen, & Losos, 2012; Perry, Dmi'el, 
& Lazell, 2000), making it an excellent system in which to investi-
gate the drivers of spatial epigenetic variation. Specifically, we test 
whether epigenetic IBD and IBE are present even when controlling 
for any underlying genetic structure, under the hypothesis that epi-
genetic-specific characteristics—such as the responsiveness of DNA 
methylation to the environment, which could result in increased IBE, 
and its higher “epimutation” rate, which could decrease IBD—could 
lead to deviations in patterns of spatial genetic and epigenetic vari-
ation. We evaluate both genome-wide and locus-specific variation 
to quantify the effects of geographical and environmental variables 
acting broadly on the whole genomic background as well as differen-
tially across different regions of the genome.

2  | MATERIAL S AND METHODS

2.1 | Study system and sample collection

The Puerto Rican crested anole, Anolis cristatellus, is a medium-sized 
(50–80 mm snout to vent length) arboreal lizard with an island-wide 
distribution across Puerto Rico. Classified as a trunk-ground eco-
morph in the adaptive radiations of anoles on the Greater Antilles 
(Losos, 2009; Mahler, Ingram, Revell, & Losos, 2013; Williams, 1983), 
A. cristatellus occupies broad surfaces, typically tree trunks, close to 
the ground and has a stocky build, large head and relatively long 
limbs (Henderson & Powell, 2009). Puerto Rico contains a diverse 
range of habitats, from montane tropical wet forests to lower mon-
tane semideciduous woodlands to coastal shrublands and dry for-
ests, and A. cristatellus is found in nearly all environments on the 
island, including disturbed and anthropogenic habitats (Henderson 
& Powell, 2009; Winchell et al., 2016). Previous research on A. cris-
tatellus has found evidence of genetic IBD and IBE in mitochondrial 
DNA (mtDNA) (Wang et al., 2013) and shifts in ecologically impor-
tant morphological, behavioural and physiological traits between 
different habitats (Gunderson et al., 2011; Leal & Fleishman, 2004; 
Otero, Huey, & Gorman, 2015; Winchell et al., 2016), suggesting a 
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variety of processes may drive population divergence between envi-
ronments in this system.

We collected 79 adult male A. cristatellus during a 12-day period 
in June 2017 from eight localities from across Puerto Rico (Figure 1). 
These localities include seven protected forests and an area of rel-
atively intact natural forest along the northwestern coast: Aguirre 
State Forest (AG), Cambalache State Forest (CM), Carite State Forest 
(CT), Guajataca State Forest (GJ), Guanica State Forest (GN), Maricao 
State Forest (MC), Rio Abajo State Forest (RA) and the Rincon pen-
insula (RN). We collected 10 specimens at each locality except for 
Rincon, from which we collected nine. These sites span a gradient 
from mesic to xeric habitat, from the montane wet forests in the 
central mountains (Carite and Maricao) to the coastal dry forests 
along the southern coast (Aguirre and Guanica). We recorded the 
GPS coordinates where each specimen was collected using handheld 
GPS devices. From each specimen, we removed liver tissue and pre-
served it in RNAlater for genetic and epigenetic analysis.

2.2 | Epigenetic sequencing

We extracted whole genomic DNA from liver samples using the 
GeneJET Genomic DNA Purification Kit (Thermo Scientific). 
Because methylation profiles are highly tissue-specific (Lokk et 
al., 2014; Schilling & Rehli, 2007; Vanyushin, Mazin, Vasilyev, & 
Belozersky, 1973), liver was chosen because of its physiological im-
portance in thermoregulation through energy storage and release 
(Rui, 2014) and because changes in gene expression in liver tissue 
have been linked to climate adaptation in anoles (Campbell-Staton et 
al., 2017). We characterized genome-wide CpG methylation profiles 
using reduced representation bisulfite sequencing (RRBS; Meissner 

et al., 2005), following the protocol of Boyle et al. (2012). RRBS relies 
on enzymatic digestion using MspI to target fragments that begin 
and/or end with CpG sites, thus enriching for potentially methylated 
genomic regions. Like other methods that rely on bisulfite conver-
sion, RRBS uses sodium bisulfite to convert unmethylated cytosines 
to uracils. These converted uracils are then transcribed as thymines 
following PCR amplification. Site-specific methylation levels can 
then be inferred using the ratio of cytosine reads to the total number 
of reads mapped to a reference genome.

In brief, we spiked 180 ng of DNA from each sample with 0.1 ng 
of unmethylated lambda phage DNA to determine sample-spe-
cific bisulfite conversion efficiencies. Samples were digested at 
37°C overnight using the restriction enzyme MspI (New England 
Biosystems), followed by end repair and A-tailing. We then ligated 
NEXTflex Bisulfite-Seq Barcodes (BIOO Scientific), which are fully 
methylated and thus resist bisulfite conversion, to the libraries and 
then pooled 17–19 libraries based on their unique barcodes. Pooled 
libraries were bisulfite-converted using the EpiTect Fast Bisulfite 
Conversion Kit (Qiagen). We then PCR-amplified our final libraries 
for 16 cycles using PfuTurbo Cx Hotstart Taq (Agilent Technologies), 
which overcomes uracil stalling that would otherwise occur due 
to bisulfite conversion. We performed single-end sequencing 
(1 × 100) for each pool on nine lanes of the Illumina HiSeq 2500 
at the Vincent J. Coates Genomics Sequencing Laboratory at UC 
Berkeley.

2.3 | Sequence alignment and variant calling

We assessed read quality using FastQC (Andrews, 2010). To gener-
ate methylation profiles, we used informatics approaches designed 

F I G U R E  1   Sampling localities for 
eight populations of Anolis cristatellus on 
maps of annual mean temperature (top) 
and total annual precipitation (bottom), 
superimposed on shaded relief maps, from 
Puerto Rico [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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specifically for use with bisulfite sequencing. We used Bs-seeker2 
(Guo et al., 2013) to build an indexed genome from the soft-masked 
Anolis carolinensis genome (AnoCar2; Alföldi et al., 2011) and then 
used end-to-end mapping in the Bs-seeker2 integrated version of 
Bowtie2 (Langmead & Salzberg, 2012) to individually align reads for 
each sample to the AnoCar2 genome. We called methylation levels 
for each cytosine at single base resolution; methylation levels are 
measured as the frequency of methylation for a given site, which 
corresponds to the proportion of cells with methylated bases at 
that locus. Using the methylkit r package (Akalin et al., 2012), we 
then identified single methylation variants (SMVs) as sites that had 
greater than a 10% range in percent methylation among samples and 
were not missing from more than 10% of individuals, with at least 
10× coverage for a minimum of five individuals per population, fol-
lowing parameters from similar studies (e.g., Gugger et al., 2016). To 
ensure that C/T genetic polymorphisms were not misinterpreted as 
variation in methylation (because unmethylated cytosines are read 
as thymines in RRBS), we identified loci that were potentially C/T 
polymorphic as any for which we found an A read on the strand op-
posite the CpG site and conservatively removed all of them from our 
SMV data set.

To generate a single nucleotide polymorphism (SNP) data set 
for analyses of genetic variation, we analysed the read data using 
a customized RADseq pipeline adapted from previous work (Bi 
et al., 2012; Singhal, 2013). First, we assessed read quality using 
FastQC (Andrews, 2010), filtered each sample for the MspI cut 
site, allowing a maximum 1-bp mismatch, then cleaned the data 
by removing polymerase chain reaction (PCR) duplicates and low 
complexity reads with trimmomatiC (Bolger, Lohse, & Usadel, 2014), 
and trimmed the adapters using skewer (Jiang, Lei, Ding, & Zhu, 
2014). We removed reads matching contaminants using Bowtie2 
(Langmead & Salzberg, 2012). We used Cd-hit (Li & Godzik, 2006) 
to cluster reads with a 0.96 similarity index and used a general-
ized vertebrate repeat masking scheme with repeatmasker (Chen, 
2004). We then created a pseudoreference genome across the 
samples and mapped clusters to it using Bowtie2 (Langmead 
& Salzberg, 2012). We performed indel-realignment with gatk 
(McKenna et al., 2010) and then identified variants in samtools (Li 
et al., 2009), using AnoCar2 as a reference genome. We set param-
eters such that we retained the mapping quality, used a minimum 
base quality score of 20, counted orphans, retained read depth, 
calculated base quality on the fly, computed genotype likelihoods 
to a bcf file, and used a faidx-indexed reference file. We piped 
this to BCFtools for variant calling, used the consensus caller 
with p-value threshold set to .1, and retained one SNP per locus 
(Li et al., 2009).

We used sNpCleaNer to filter variant sites (https ://github.com./
tplin derot h/) using an even coverage filter, which controls for ex-
ceptionally high or low read depth in any sample, and an exact test 
of Hardy–Weinberg equilibrium (HWE) with a minimum p-value of 
.0001 (Fumagalli, Vieira, Linderoth, & Nielsen, 2014). For the variant 
sites that passed all filters, we then performed Bayesian SNP and 
individual genotype calling in aNgsd (Korneliussen, Albrechtsen, & 

Nielsen, 2014), using a folded site frequency spectrum and AnoCar2 
as a reference genome. We set a p-value of 1 × 10−6 for calling SNPs 
and a 0.95 posterior probability threshold for calling genotypes. 
Because unmethylated cytosines are read as thymines in RRBS, we 
removed all C/T polymorphic loci to ensure that our SNP data set 
contained only true genetic polymorphisms.

We used a pseudoreference genome for mapping clusters and 
AnoCar2 for calling SNPs because, for nonmodel organisms, map-
ping to a divergent reference genome can introduce mapping biases 
that can impact downstream analyses. For example, reads may be 
filtered as low quality and removed when in fact they may simply 
represent a region of genome divergence between the reference 
and the focal taxon, thus reducing inferred genomic differentiation 
(Sarver et al., 2017). Pseudoreference genomes have been demon-
strated to reduce alignment error and downstream variant detec-
tion, as the reads used to generate the assembly are aligned back 
onto themselves (Bi et al., 2012; Singhal, 2013).

2.4 | GIS data layers

We downloaded 19 bioclimatic data layers with 30 arc-sec resolu-
tion (~1 km) from the WorldClim2 database (https ://www.world 
clim.org; Fick & Hijmans, 2017). These data layers represent an-
nual trends (e.g., annual mean temperature), seasonality (e.g., 
precipitation seasonality), and extreme or limiting environmental 
factors (e.g., precipitation of driest month) for a set of ecologically 
relevant temperature and precipitation variables. We also down-
loaded a set of data layers for the enhanced vegetation index (EVI) 
and the normalized difference vegetation index (NDVI) at 1-km 
spatial resolution from the MODIS database (https ://modis.gsfc.
nasa.gov). These data layers represent two commonly used veg-
etation metrics that provide consistent spatial and temporal com-
parisons of vegetation canopy greenness and structure, derived 
from red, near-infrared and blue wavebands collected by remote 
sensing satellites. NDVI measures the density of greenness over a 
land surface, and EVI is a similar metric that uses additional wave-
lengths of reflected light to minimize canopy–soil variations and 
improve sensitivity over dense vegetation conditions. These data 
layers are available at 16-day and monthly temporal resolution. 
Because vegetation changes seasonally, we chose monthly veg-
etation layers corresponding to the peak of the dry season and 
peak of the wet season, based on average monthly precipitation 
in Puerto Rico. Hence, we included four vegetation layers in our 
data set: dry season EVI, wet season EVI, dry season NDVI and 
wet season NDVI.

Because bioclimatic and vegetation variables often covary, 
we reduced the collinearity in our set of 23 environmental layers 
by performing principal components analysis (PCA) for rasters in 
the rstoolBox r package (Leutner, Horning, Schwald-Willmann, & 
Hijmans, 2019). The raster PCA produces a set of principal compo-
nent rasters (PC rasters) that represent the orthogonal transforma-
tions of the original data layers. We analysed the scree plot of the 

https://github.com./tplinderoth/
https://github.com./tplinderoth/
https://www.worldclim.org
https://www.worldclim.org
https://modis.gsfc.nasa.gov
https://modis.gsfc.nasa.gov
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total variance in the data explained by each PC to determine the 
number of PC rasters to retain for downstream analyses.

2.5 | SNP and SMV outlier detection

To identify SNPs and SMVs with allele or methylation frequencies 
that are statistical outliers after correcting for population structure, 
we performed a genome scan using the pCadapt r package (Luu, 
Bazin, & Blum, 2017). The pCadapt approach uses PCA to charac-
terize population structure and then calculates the Mahalanobis 
distance for each SNP or SMV in principal component space to 
identify candidate loci that are outliers with respect to the genomic 
background. Simulation data suggest that pCadapt is robust to hier-
archical population structure and outperforms competing methods 
in cases of admixture and population divergence (Luu et al., 2017). 
SNP loci identified as outliers by this method are potentially under 
selection, and SMV loci are potentially influenced by different forces 
than those operating on the whole epigenomic background. For both 
tests, we identified statistically significant outliers after performing 
a false discovery rate (FDR) correction with a cutoff of 1%. To evalu-
ate whether different regions of the genome exhibit different levels 
of epigenetic divergence, we constructed Manhattan plots with the 
log of the p-value for each SMV, based on the pCadapt analysis, at its 
position in the genome using a custom R script.

For downstream analyses, we partitioned our SNP and SMV data 
into outlier and nonoutlier data sets. The nonoutlier data sets were 
used to calculate genetic and epigenetic structure, and we used 
the outlier SMV data set to test for locus-specific associations be-
tween epigenetic and environmental variation. Methylation that falls 
outside of promoter regions or gene bodies is not known to affect 
gene expression (Jones, 2012; Lou et al., 2014; Zemach, McDaniel, 
Silva, & Zilberman, 2010), and therefore environmental associations 
with SMVs in intergenic regions are more likely to be spurious or 
transient. So, we characterized the genomic context of each outlier 
SMV identified by pCadapt by comparing its genomic location to the 
annotated A. carolinensis genome using the geNomatioN r package 
(Akalin, Franke, Vlahoviček, Mason, & Schübeler, 2015). Because 
not all gene elements will be conserved between A. carolinensis and 
A. cristatellus, particularly promoter regions, the putative genomic 
context for each SMV should be interpreted with some caution, but 
this information can help to identify any major patterns between en-
vironmental associations and genomic context. We also identified 
the gene and putative function associated with each of the outlier 
SMVs that were located in promoter or gene body (exon and intron) 
regions, based on the A. carolinensis genome, using the Ensembl ge-
nome browser (Zerbino et al., 2018).

2.6 | Genetic and epigenetic structure

To characterize population genetic structure, we calculated pair-
wise FST values between each of our study localities from our set 

of putatively neutral SNPs using the hierFstat r package (Goudet & 
Jombart, 2015). To retrieve an analogous metric for population epi-
genetic structure, we calculated pairwise ΦST values from our set 
of nonoutlier SMVs using hierarchical analysis of molecular variance 
(AMOVA) (Foust et al., 2016) in the pegas r package (Paradis, 2010). 
We also investigated whether the genomic context of SMV sites af-
fected epigenetic differentiation by characterizing the genomic con-
text for each nonoutlier SMV, as we did for the outlier SMVs above, 
and then calculating population pairwise ΦST values for exon, intron, 
promoter and intergenic sites. We compared the resulting ΦST ma-
trices to each other and to the matrix for all nonoutlier SMVs using 
Mantel tests in the vegaN r package (Oksanen, Kindt, Legendre, 
Ohara, & Stevens, 2007).

To examine spatial genetic structure, we generated a genetic 
covariance matrix and performed a genetic PCA using the ade-
geNet r package (Jombart, 2008) and performed analysis of popu-
lation structure and admixture in struCture (Pritchard, Stephens, & 
Donnelly, 2000). We ran an admixture model with a 10,000-step 
burn-in followed by a 35,000-step Markov chain Monte Carlo 
(MCMC) procedure and performed 10 replicates of each k value 
from k = 2 to k = 10. We checked for convergence between chains 
and between runs and used struCture harvester (Earl & vonHoldt, 
2012) and Clumpp (Jakobsson & Rosenberg, 2007) to aggregate repli-
cates for each k value and distruCt (Rosenberg, 2004) to visualize the 
individual admixture probabilities.

2.7 | Isolation by distance and environment

To quantify the environmental and geographical drivers of spatial 
variation in genetic and epigenetic composition, we used generalized 
dissimilarity modelling (GDM), a form of nonlinear matrix regression 
analysis (Ferrier, Manion, Elith, & Richardson, 2007; Fitzpatrick & 
Keller, 2015), and multiple matrix regression with randomization 
(MMRR) analysis (Wang, 2013). We used these complementary 
analyses to test the null hypothesis that spatial epigenetic structure 
should simply reflect spatial genetic structure against alternative hy-
potheses that there is significant epigenetic IBD or IBE even after 
controlling for any underlying genetic structure.

In GDM, predictor variables are first transformed using a series of 
I-spline basis functions, and then models are fit using maximum-like-
lihood estimation (Ferrier et al., 2007). Variables are standardized 
so their resulting coefficients can be compared, and GDM is robust 
to collinearity among predictor variables. In a GDM, the coefficient 
for each variable describes the proportion of compositional turnover 
explained by that variable and is determined by the maximum height 
of its I-spline (Ferrier et al., 2007; Fitzpatrick & Keller, 2015). The 
slope of the I-spline indicates the rate of compositional turnover 
and how this rate varies at any point along the gradient concerned, 
while holding all other variables constant (Landesman, Nelson, & 
Fitzpatrick, 2014). Hence, GDM is a powerful method for distin-
guishing between the effects of environmental dissimilarity (IBE) 
and geographical distance (IBD) on genetic and epigenetic structure 
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because it accounts for nonstationary rates of turnover along en-
vironmental gradients (Warren, Cardillo, Rosauer, & Bolnick, 2014).

We performed the GDM analysis using the gdm r package 
(Manion, Lisk, Ferrier, Nieto-Lugilde, & Fitzpatrick, 2016). GDM fits 
a generalized linear model of the form:

where d is any distance between localities i and j, α0 is the intercept, p is 
the number of covariates, and fp(x) are the I-spline-transformed predic-
tor variables (Fitzpatrick & Keller, 2015). For each GDM, we used the 
raster PCs and pairwise geographical distances as predictor variables. 
For the raster PCs, we extracted values from each raster for the coor-
dinates of each locality. For the geographical distances, we calculated 
Euclidean distances between localities and minimum topographic dis-
tances that account for the overland distance imposed by topographic 
relief, using the topoDistance r package (Wang, 2019). We fitted mod-
els with either Euclidean distance or topographic distance separately, 
keeping all other variables the same, to compare their effects. For the 
GDM analysis of genetic variation we used the matrix of pairwise FST 
values as the response variable, and for the analysis of epigenetic varia-
tion we used the matrix of pairwise ΦST values. Finally, because epigen-
etic variation can depend on genetic variation, we also fit a GDM with 
ΦST as the response variable and with FST as a predictor, in addition to 
the environmental (PC) variables and geographical distances.

To identify the optimal model for each GDM analysis and to 
evaluate the statistical significance of the model and each predictor 
variable, we used a backward elimination and variable permutation 
model selection procedure implemented in the gdm package (Ferrier 
et al., 2007; Manion et al., 2016). This procedure begins with the 
full model containing all predictor variables (geographical distance 
and environmental PCs 1–5, plus FST for the epigenetic analysis) then 
iteratively removes the variable with the lowest coefficient and re-
calculates the model fit and the significance values. Under the per-
mutation procedure, model significance is evaluated by permuting 
all of the predictor variables, refitting the model under each permu-
tation to generate a null distribution of deviance-explained values 
(model fit scores), and then comparing the model for the original 
data to the distribution derived from the permutations. The signif-
icance of each predictor variable is evaluated by permuting each 
variable individually to generate a null distribution of the change in 
deviance explained for the model and then comparing the contribu-
tion of each variable to the model against the null distribution. The 
final result is a model that retains only the most important predictor 
variables, with significance values for the whole model and for each 
predictor (Manion et al., 2016). We used 999 permutations in each 
of the permutation tests.

After fitting the GDM to these data, we visualized spatial pat-
terns of genetic and epigenetic turnover (changes in genetic or epi-
genetic composition) by projecting the model onto the PC rasters. 
This process generates a new raster with a colour value assigned to 
each cell based on its predicted genetic or epigenetic composition. 

Greater differences in the colours between cells indicate greater 
predicted genetic or epigenetic differences. Finally, to better under-
stand the shape of any nonlinear relationships between the response 
and predictor variables, we plotted the I-spline basis functions for 
each predictor variable in the final models.

We performed the MMRR analysis using the “MMRR” function in 
R (Wang, 2013). MMRR performs multiple linear regression on dis-
tance matrices using permutations of the response variable to assess 
significance because of the nonindependence of distance matrix 
data. As with the GDM analyses, we applied a backward elimination 
procedure to perform variable selection, starting with the full set of 
predictor variables and then removing the variable with the lowest 
coefficient and refitting the model until only statistically significant 
variables (p < .05) remained. All tests of significance were performed 
with 999 permutations, and we performed MMRR analyses on epi-
genetic structure with and without FST as a predictor variable to 
match our GDM analyses. Following the GDM and MMRR analyses, 
we plotted FST, ΦST and residual ΦST (after partialling out FST) against 
geographical distance and environmental distance to illustrate the 
patterns of IBD and IBE in our data.

2.8 | Genetic– and epigenetic–environmental 
associations

To quantify associations between SNPs or SMVs and environmental 
factors, we used generalized linear mixed models (GLMMs) imple-
mented in the spamm (spatial mixed models) package in r (Rousset 
& Ferdy, 2014). Significant associations could result from divergent 
selection between environments or direct influences of the envi-
ronment on methylation levels at a locus (Gugger et al., 2016), and 
linear mixed models have been used to identify gene–environment 
associations in both genetic and epigenetic data (Gugger et al., 2016; 
Lobréaux & Melodelima, 2015; Yoder et al., 2014). GLMMs adjust for 
the correlation structure among populations using a kinship matrix 
estimated from the data (Lobréaux & Melodelima, 2015; Rousset & 
Ferdy, 2014; Sul & Eskin, 2013). For the SMVs, we used a kinship 
matrix based on the correlations in methylation profiles between 
populations, constructed in methylkit (Akalin et al., 2012), because 
kinship matrices based on epigenetic variation, rather than genetic 
variation, have been shown to better capture pairwise relatedness 
and control for the rate of false positives when testing for epige-
netic–environmental associations (Gugger et al., 2016).

We then performed a GLMM analysis for each of the outlier SMVs 
to test for environmental associations. For these analyses, we consid-
ered three environmental variables, with low to moderate pairwise 
correlations (r = .051–.423), that could act as environmental stressors 
or forces of selection on Anolis lizards: (a) maximum temperature of 
the warmest month (Tmax; BIO5), which was highly correlated with 
minimum temperature of the coldest month (Tmin; BIO6, r = .976), ei-
ther of which could represent thermal stress; (b) temperature annual 
range (Trange; BIO7), which was highly correlated with isothermality 
(BIO3, r = .954), both of which are measures of temperature stability; 
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and (c) precipitation seasonality (BIO15), which was correlated with dry 
season precipitation (BIO17, r = .845) and vegetation (dry season EVI, 
r = .644) and represents habitat stability. Experiments have shown that 
A. cristatellus and other anoles respond to variation in thermal environ-
ment, even over short periods (Hertz, 1992; Kolbe et al., 2012; Muñoz 
et al., 2014), and exhibit physiological and behavioural divergence 
in response to humidity gradients and changes in habitat structure 
(Gorman & Hillman, 1977; Gunderson et al., 2011; Hertz & Huey, 1981; 
Leal & Fleishman, 2004).

In GLMM, the SNP or SMV data comprise the response vari-
able, environmental factors are coded as fixed effects, and a cor-
relation matrix (typically population structure, relatedness or 
geographical distance) is a covariate with a random effect (Lobréaux 
& Melodelima, 2015). For each SMV, we used the population mean 
methylation frequency as the response variable, the epigenetic kin-
ship matrix as a covariate, and maximum temperature (Tmax), tem-
perature range (Trange) and precipitation seasonality as predictor 
variables. For each SNP, we used the major allele frequency for each 
population as the response variable, the FST matrix as a covariate, 
and Tmax, Trange and precipitation seasonality as predictor variables. 
For each analysis, we tested a set of hierarchical models that in-
cluded the three environmental predictors on their own, in pairs, and 
all together, resulting in a set of six nested GLMMs plus a null model 
that included only the covariate matrix. We compared models based 
on their Akaike information criterion (AIC) scores and calculated the 
statistical significance of the best model compared to the null model 
based on their log likelihoods (Rousset & Ferdy, 2014). We then ad-
justed p-values to q-values using the FDR method, implemented in 
the Qvalue r package (Storey, Bass, Dabney, Robinson, & Warnes, 
2019), to correct for multiple tests.

3  | RESULTS

3.1 | Sequence alignment and variant calling

Our sequencing of 79 Anolis cristatellus yielded 9,642,016 cleaned 
and filtered reads, totalling 911,701,107 bp. Bisulfite conversion 
rates were consistently high (>98.23%) for all samples, and map-
ping efficiency ranged from 37.93% to 42.15% for each sample 
(Table S1). For our genetic data set, after all filtering and quality 
control steps, we recovered 8,459 SNP loci that were present in 
at least 85% of the 79 samples in our data set, with no individual 
missing more than 10% data. The average coverage for these SNPs 
was 11.4 ± 38.5 reads per locus per individual. For our epigenetic 
data set, our sequencing efforts resulted in low coverage of CpG 
sites for two samples from Guajataca (GJ), so we removed these 
from our data set. For the remaining 77 samples, after applying 
a 10% missing data threshold and requiring that SMV sites be 
represented in at least five samples per population with at least 
10×  coverage, we recovered 53,852 SMVs. After applying a cut-
off of at least a 10% range in methylation frequencies among 
samples we retained 9,772 SMVs, and after filtering for potential 

C/T polymorphisms our final epigenetic data set included 8,580 
SMVs with average coverage of 111.7 ± 264.7 reads per locus per 
individual. Mean methylation frequencies across all loci for each 
population varied little, ranging from 34.7% to 36.1%.

3.2 | GIS data layers

Each of the 23 environmental data layers in our data set showed 
substantial spatial variation across Puerto Rico. The PCA on these 
raster layers resulted in five layers retained for downstream analy-
ses, based on the scree plot, that cumulatively explained 94.27% of 
the variance in the original variables (Table S2). Loadings for each 
variable indicated that raster PC1 and raster PC2 were primarily de-
scribed by temperature variables, with PC1 reflecting annual mean, 
minimum and maximum temperatures and PC2 reflecting tempera-
ture range and seasonality. Raster PC3 was weighted heavily by the 
vegetation variables (NDVI and EVI) and wet season precipitation. 
The highest loadings for PC4 were temperature seasonality and 
precipitation seasonality, and PC5 was composed largely of vari-
ables representing bioclimatic extremes, including mean tempera-
ture of the driest quarter and precipitation of the warmest quarter 
(Table S2).

3.3 | SNP and SMV outlier detection

Based on the pCadapt analysis, we identified 24 SNPs and 177 
SMVs that were significant outliers after FDR correction for mul-
tiple testing. The range in methylation frequencies between popu-
lations for each of these loci averaged 72.8%, suggesting there 
are many highly differentiated SMVs across the genome. The 
Manhattan plot of epigenetic variation showed that highly diver-
gent loci were dispersed throughout the genome and did not ap-
pear to cluster in any regions (Figure S1). Gene annotation, based 
on the Anolis carolinensis genome, assigned 72 of the outlier SMVs 
to promoter or gene body regions: six in exons, 56 in introns and 
10 in promoters (Table S3). These genes had a wide range of puta-
tive functions, many associated with molecular and cellular pro-
cesses (Table S3).

3.4 | Genetic and epigenetic structure

Our estimates of genetic structure revealed low to moderate levels 
of genetic differentiation between populations, with pairwise FST 
values ranging from 0.038 to 0.071 and mean FST = 0.054 ± 0.010 
SD (Table 1). We also found moderate to high levels of epigenetic 
differentiation, with pairwise ΦST values ranging from 0.049 to 
0.255 and mean ΦST = 0.128 ± 0.053 SD (Table 1). All pairwise val-
ues of FST and ΦST were significantly different from zero after cor-
rection for multiple tests (p < .05). The ΦST matrices constructed 
from SMVs with different genomic contexts (introns, exons, 
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promoters and intergenic regions) were all significantly correlated 
with each other and with the ΦST matrix for all nonoutlier SMVs 
(p ≤ .022 in all cases).

Analyses of population structure identified two major genetic 
clusters (k = 2) that corresponded to the four northernmost popu-
lations (CM, GJ, RA and RN) and the two southernmost populations 
(AG and GN), with the two populations in the central mountains (CT 
and MC) showing putative admixture between the northern and 
southern clusters (Figure S2). The genetic PCA suggested well-dif-
ferentiated populations, overall, with MC and CT midway between 
the northern and southern populations along the first genetic prin-
cipal component (gPC1) and populations divided east–west along 
gPC2 (Figure S3). The epigenetic PCA suggested more population 
overlap in epigenetic space than genetic space but also differenti-
ated the same population groups (Figure S4).

3.5 | Isolation by distance and environment

Generalized dissimilarity modeling analyses found evidence of sig-
nificant IBD and IBE for both genetic and epigenetic differentiation 

(Figure 2; Table 2). In all cases, topographic distances were a slightly 
better fit than Euclidean distances. The best model for genetic 
structure explained a very high proportion of the deviance in the 
data (deviance explained = 0.765, p = .001; Table 2) and included 
topographic distance, environmental PC1 (temperature) and envi-
ronmental PC3 (vegetation). The strongest individual effect came 
from topographic distance (βIBD = 0.016, p = .002), followed by PC1 
(βPC1 = 0.013, p = .045) and PC3 (βPC3 = 0.008, p = .040). However, 
the combined effects of PC1 and PC3 indicate a slightly stronger 
signal of IBE (βIBE = 0.021) than IBD, overall.

For GDM analyses of epigenetic structure, when we included 
only topographic distance and the environmental PCs as predictor 
variables the best model found significant effects of topographic 
distance (βIBD = 0.083, p = .004), PC1 (βPC1 = 0.061, p = .048) and 
PC3 (βPC3 = 0.090, p = .002) on epigenetic differentiation (Table 2; 
Figure 2). Together, the regression coefficients for environmental 
PC1 (temperature) and PC3 (vegetation) indicate a strong signal of 
IBE (βIBE = 0.151). This model was a significant fit to the data and 
explained a large portion of the variance in the data (deviance ex-
plained = 0.684, p = .002). When we also included FST as a predictor, 
the best model found that FST had the largest effect on epigenetic 

 AG CM CT GJ GN MC RA RN

AG — 0.193 0.087 0.097 0.255 0.105 0.174 0.200

CM 0.065 — 0.085 0.175 0.107 0.099 0.059 0.119

CT 0.048 0.045 — 0.099 0.173 0.049 0.086 0.116

GJ 0.068 0.046 0.052 — 0.226 0.061 0.165 0.174

GN 0.051 0.065 0.053 0.067 — 0.144 0.149 0.121

MC 0.052 0.047 0.042 0.045 0.040 — 0.084 0.082

RA 0.070 0.038 0.051 0.048 0.070 0.050 — 0.106

RN 0.071 0.052 0.056 0.039 0.068 0.049 0.054 —

TA B L E  1   Pairwise estimates of genetic 
FST (below diagonal) and epigenetic ΦST 
(above diagonal) for eight populations of 
Anolis cristatellus; all values are statistically 
significant after correction for multiple 
tests

F I G U R E  2   GDM-fitted I-splines for each predictor variable significantly associated with genetic (FST) and epigenetic distances (ΦST), 
based on 8,459 SNPs and 8,580 SMVs. Included are the results of three GDM analyses: genetic distance versus geographical (Geo.) and 
environmental (Env.) distances (left), epigenetic distance versus geographical and environmental distances (middle), and epigenetic distance 
versus versus geographical, environmental and genetic distances (right). The maximum height of each I-spline indicates the total amount of 
genetic or epigenetic turnover associated with that variable, while holding all other variables constant, and the shape of each curve indicates 
how the rate of compositional turnover varies with predictor dissimilarity [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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differentiation (βFST = 0.100, p = .001) and that PC3 also had a sig-
nificant effect (βPC3 = 0.063, p = .007; Table 2; Figure 2). Again, this 
model explained a large proportion of the variance in the data 
and was a significant fit (deviance explained = 0.710, p < .001). 
Projections of the GDM models onto the environmental data layers 
showed similar spatial patterns of turnover in genetic and epigenetic 
composition (Figure 3).

Results from MMRR were highly concordant with the GDM re-
sults (Table 2). For analyses of genetic structure, the MMRR results 
indicated significant IBD and IBE in a model that was a significant 
fit to the data (r2 = .381, p = .028). In these results, geographical 
distance (βIBD = 0.396, p = .044) and PC3 (βPC3 = 0.377, p = .036) 
had significant effects on genetic differentiation, but PC1 did not 
(βPC1 = 0.223, p = .162). For analyses of epigenetic structure versus 
geographical distance and environmental dissimilarity, the MMRR 

results indicated a strong effect of PC3 on epigenetic differentia-
tion (βPC3 = 0.591, p = .006) but did not find significant effects of 
geographical distance (βIBD = 0.233, p = .192) or PC1 (βPC1 = 0.073, 
p = .629). For analyses of epigenetic structure that also included FST 
as a predictor, MMRR found strong effects of both genetic differen-
tiation (βFST = 0.613, p = .001) and PC3 (βPC3 = 0.305, p = .013) on 
epigenetic differentiation. The model including FST was a better fit to 
the data (r2 = .756, p = .001) than the one including only geographical 
and environmental variables (r2 = .448, p = .022; Table 2).

Plots of genetic FST and epigenetic ΦST against geographical 
distance and environmental distance show positive correlations, in-
dicating genetic and epigenetic IBD and IBE (Figure 4). When the 
effects of FST are controlled for, the plot of residual ΦST (after partial-
ling out FST) shows that the correlation with geographical distance 
(IBD) flattens out but the positive correlation with environmental 
distance remains (Figure 4).

3.6 | Genetic- and epigenetic–environmental 
associations

We detected significant associations with environmental variables 
for 96 out of the 177 outlier SMVs after FDR correction (q < 0.05): 
four in promoters, five in exons, 33 in introns and 54 in intergenic 
regions (Table 3; Table S3). For all but one of the 96 SMVs, GLMM 
analysis indicated a significant correlation with precipitation season-
ality. Of these 95 SMVs, 14 were also significantly associated with 
maximum temperature of the warmest month (Tmax) and 25 with 
temperature annual range (Trange). The single SMV not associated 
with precipitation seasonality was significantly associated with Tmax 
and Trange (Table S3). We did not see any systematic differences be-
tween SMVs in genic and intergenic regions with respect to their 
environmental associations (Table 3). SMVs in exons did have a 
high rate of significant environmental association (83% compared 
to 40%–59% for introns, promoters and intergenic regions), but our 
data set includes only six SMVs in exons, preventing meaningful sta-
tistical comparisons.

For our genetic data set, we found significant environmental as-
sociations with allele frequencies in only two of the 24 outlier SNPs. 
Both were significantly associated with Tmax and Trange but not with 
precipitation seasonality (βTmax = 0.006, βTrange = 0.014, p = .012; and 
βTmax = 0.005, βTrange = 0.017, p = .012).

4  | DISCUSSION

Although recent studies have shown that epigenetic variation may 
play an important role in population-level responses to environmen-
tal heterogeneity (Alakärppä et al., 2018; Platt et al., 2015; Richards, 
Schrey, & Pigliucci, 2012; Xie et al., 2015), so far little evidence ex-
ists for spatial patterns of epigenetic differentiation in natural popu-
lations that are independent from genetic structure (Dubin et al., 
2015; Foust et al., 2016; Herrera et al., 2016; Hu & Barrett, 2017). In 

TA B L E  2   Results of GDM and MMRR analyses for (a) 
genetic differentiation (FST) versus geographical distance and 
environmental dissimilarity, (b) epigenetic differentiation (ΦST) 
versus geographical distance and environmental dissimilarity, 
and (c) epigenetic differentiation versus geographical distance, 
environmental dissimilarity, and genetic differentiation

(a) Genetic versus Geo. + Env.

Variable

GDM MMRR

Dev. Expl. = 0.765, p = .001 r2 = .381, p = .028

Coefficient p-value Coefficient p-value

Geo. Dist. 0.016 .002 0.396 .044

PC1 0.013 .045 0.223 .162

PC3 0.008 .040 0.377 .036

(b) Epigenetic versus Geo. + Env.

Variable

GDM MMRR

Dev. Expl. = 0.684, p = .002 r2 = .448, p = .022

Coefficient p-value Coefficient p-value

Geo. Dist. 0.083 .004 0.233 .192

PC1 0.061 .048 0.073 .629

PC3 0.090 .002 0.591 .006

(c) Epigenetic versus Geo. + Env. + Gen.

Variable

GDM MMRR

Dev. Expl. = 0.710, p < .001 r2 = .756, p = .001

Coefficient p-value Coefficient p-value

PC3 0.063 .007 0.305 .013

FST 0.100 .001 0.613 .001

Note: GDM results include the total deviance explained (Dev. Expl.) and 
significance (p) for the fitted model. MMRR results include the model fit 
(r2) and significance (p). For each model, the significance value of each 
predictor variable based on 999 permutations is included next to its 
regression coefficient. Variables with values in italics were not retained 
in the best MMRR model after backward elimination but are shown 
here for comparison with the GDM results.
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particular, empirical demonstration of epigenetic IBE has been lim-
ited to only a few plant systems (Foust et al., 2016; Herrera et al., 
2017). By performing landscape genetic and landscape epigenetic 
analyses for a species inhabiting a diverse range of habitats, we were 
able to quantify not only genome-wide and locus-specific patterns 
of variation but also the specific environmental variables associ-
ated with epigenetic divergence. Our results provide clear evidence 
that geographical and environmental factors play important roles in 
structuring spatial genetic and epigenetic variation in a natural ver-
tebrate system.

4.1 | Spatial genetic and epigenetic structure

We found that spatial genetic variation does, indeed, explain a 
large amount of epigenetic variation in Anolis cristatellus (Table 2). 
Projections of spatial turnover in genetic and epigenetic composi-
tion show obvious similarities (Figure 3), and plots of genetic and 
epigenetic IBD and IBE indicate similar slopes (Figure 4), suggesting 
that genetic and epigenetic variation may have shared responses 
to geographical and environmental factors (Herrera et al., 2017) 
or that epigenetic variation could depend on genetic variation. 
However, we also found strong evidence that epigenetic struc-
ture in this system is not only attributable to the pattern of ge-
netic variation. Our GDM and MMRR analyses revealed significant 
epigenetic IBE, even after accounting for the effects of genetic 
structure (Table 2). In each analysis, environmental PC3 (vegeta-
tion) has about half to two-thirds as large an effect as genetic FST 
on epigenetic structure (GDM: βPC3 = 0.063, βFST = 0.100; MMRR: 
βPC3 = 0.305, βFST = 0.613), suggesting that about one-third of the 

variation in epigenetic distances (ΦST) explained by the models 
is due to IBE (Table 2). Additionally, after accounting for genetic 
structure, signals of epigenetic IBD and effects of PC1 (tempera-
ture) disappear, probably because FST captures variation in PC1 
and geographical distance (Table 2; Figures 2 and 4). Hence, we do 
not find evidence for epigenetic IBD independent of genetic struc-
ture but do find clear evidence for a strong pattern of genome-
wide epigenetic IBE.

Our analyses of genetic variation, by contrast, recovered signifi-
cant patterns of both geographical and environmental structure. The 
results of our struCture and genetic PCA analyses revealed major 
geographical subdivision of our sampled populations between the 
northern and southern parts of Puerto Rico (Figure S2 and gPC1 in 
Figure S3) and some structure reflecting their east–west orientation 
as well (gPC2 in Figure S3). These results are broadly consistent with 
previous phylogeographic analyses of mtDNA data in A. cristatellus 
(Kolbe et al., 2007; Revell, Harmon, Langerhans, & Kolbe, 2007), 
which identified deep splits between southwestern Puerto Rico and 
the rest of the island, with additional substructure between south-
east, northeast and northwest populations. GDM and MMRR each 
found significant IBD and IBE (Table 2), consistent with a previous 
analysis of mtDNA variation in A. cristatellus (Wang et al., 2013). 
They differed slightly in identifying which environmental variables 
contributed to IBE (Table 2), but these differences are minor and 
probably result from MMRR fitting linear relationships between 
untransformed variables but GDM modelling nonlinear relation-
ships (Figure 2; Ferrier et al., 2007; Fitzpatrick & Keller, 2015; Wang, 
2013).

A variety of selective and nonselective processes can generate 
genetic IBE, including natural and sexual selection against migrants 

F I G U R E  3   Maps of spatial turnover 
in projected genetic (a) and epigenetic 
(b) composition, based on GDM analysis. 
Fitted generalized dissimilarity models 
are used to transform the underlying 
geographical and environmental variables, 
resulting in projections of biological 
composition in which increasingly 
different colours indicate greater genetic 
or epigenetic dissimilarity [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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from divergent environments, differential fitness of admixed off-
spring and biased dispersal (Wang & Bradburd, 2014). Because a 
substantial amount of spatial variation in genome-wide methylation 
is explained by genetic structure in A. cristatellus, these same pro-
cesses may drive epigenetic IBE, too, by reducing dispersal between 
different environments and allowing epigenetic divergence through 
random drift (Richards et al., 2010; Trucchi et al., 2016). Experimental 
evidence has shown that A. cristatellus from different environments 
diverge physiologically, including in temperature regulation and 
water loss (Gunderson et al., 2011; Hertz, 1992; Huey, 1983), and 
morphologically in traits associated with locomotor performance 
(Winchell et al., 2016), both of which could lead to natural selection 
against migrants from different environments. Other studies have 

shown that habitat structure leads to divergence in anole dewlaps—
the longitudinal flap of skin that extends below the lower jaw and is 
used in intraspecific signalling—and even the timing of reproductive 
cycles (Leal & Fleishman, 2004; Otero et al., 2015). Environmental 
PC1 is an axis that primarily describes temperature variation, and 
PC3 primarily comprises vegetation layers. So, it seems reasonable 
that genetic and epigenetic IBE could result from any of these pro-
cesses in this system, although experiments linking gene flow or 
genetic differentiation to divergent natural or sexual selection are 
needed to provide confirmation.

Additionally, for epigenetic variation, two other mechanisms 
could potentially generate IBE as well. First, because epigenetic 
changes can be environmentally induced, differential methylation 

F I G U R E  4   Plots of (a) genetic 
and epigenetic IBD (FST and ΦST vs. 
geographical distance), (b) genetic 
and epigenetic IBE (FST and ΦST vs. 
geographical distance), (c) genetic distance 
versus epigenetic distance, and (d) 
epigenetic IBD and IBE after controlling 
for genetic structure (residual ΦST vs. 
geographical distance and environmental 
distance) [Colour figure can be viewed at 
wileyonlinelibrary.com]

TA B L E  3   SMV outliers by genetic element, including the total number of outliers, the number of outliers with significant environmental 
associations (Sig. env. assoc.), and the number of those SMVs associated with maximum temperature of the warmest month (Tmax), 
temperature annual range (Trange) and precipitation seasonality (Precip.)

Element Total outliers Sig. env. assoc. Tmax Trange Precip.

Exon 6 5 0 0 5

Intron 56 33 11 3 33

Promoter 10 4 0 1 4

Intergenic 105 54 15 11 53

Total 177 96 26 15 95

www.wileyonlinelibrary.com
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could occur across environmental gradients of the factors that in-
duce methylation (Angers et al., 2010; Dowen et al., 2012; Jaenisch 
& Bird, 2003), potentially leading to divergence between environ-
ments across the epigenome. Second, the effect of methylation on 
gene expression means that epigenetic variation can be linked to 
phenotypic plasticity (Artemov et al., 2017; Baerwald et al., 2016; 
Dimond & Roberts, 2016), potentially leading to epigenetic diver-
gence between environments for gene body methylation affecting 
transcription if it results from a plastic response to the local envi-
ronment or contributes to differential survival or biased dispersal. 
Differences between genetic and epigenetic IBE indicate differences 
in how the genome and methylome respond to environmental varia-
tion and are probably attributable to processes such as these that act 
on epigenetic but not genetic variation. Our results emphasize that 
genetic structure cannot entirely explain variation in genome-wide 
methylation across a landscape, and further studies linking variation 
in methylation to phenotypic changes could provide insights into the 
effects of epigenetic variation on population divergence and plas-
ticity in different environments (Verhoeven et al., 2016).

4.2 | Climate-associated SMVs

Our analyses of individual SMVs found 96 outliers strongly associ-
ated with key climatic variables (Table S3)—about half of these were 
in promoter or gene body regions, suggesting potential involvement 
in adaptive or plastic responses to local environments, but many fell 
in intergenic regions, where methylation has no known functional 
effect. Several of the outlier SMVs had methylation frequencies 
significantly correlated with either maximum temperature of the 
warmest month (Tmax, 26 SMVs) or temperature annual range (Trange, 
15 SMVs; Table 3; Table S3). These loci did not overlap with genes 
previously predicted to have roles in thermal adaptation in nonavian 
reptiles (Wollenberg Valero et al., 2014), but genes outside of these 
predicted networks can be involved in responses to climate varia-
tion in Anolis lizards (Campbell-Staton et al., 2017). Several studies 
have proposed that methylation may provide a mechanism for rapid 
responses to climate change (Dimond & Roberts, 2016; Jeremias et 
al., 2018; Metzger & Schulte, 2017; Platt et al., 2015), and further 
studies could help to understand whether methylation is involved 
in thermal adaptation or acclimatization in small ectotherms, such 
as A. cristatellus, which are particularly vulnerable to climate change 
(Metzger & Schulte, 2017; Sinervo et al., 2010).

All but one of the 96 environmentally associated outlier SMVs, 
including all 42 SMVs in promoters or gene bodies, were significantly 
linked to precipitation seasonality, indicating that DNA methylation 
may play a role in mediating responses to environmental variabil-
ity in rainfall and its effects on habitat structure. Several of these 
SMVs were located in genes belonging to biological pathways that 
could be important for facilitating responses to environmental con-
ditions (Table S3), including ATPase activity (ATP9A), Rho-GTPase 
activity (ARHGAP15, CHN1 and PAK1), cell–cell adhesion (DSC2), 
energy metabolism (PPFIBP1) and transmembrane signalling 

(GRIK4, SLC38A7, SLC6A7, TENM2, and XPR1). Epigenetic diver-
gence in genes involved in Rho-GTPase and signal transduction 
pathways has been identified in a variety of systems and associated 
with environmental stress (Baerwald et al., 2016; Hu et al., 2019; 
Hu, Pérez-Jvostov, Blondel, & Barrett, 2018; Uren Webster et al., 
2018). Moreover, one sodium symporter gene, SLC6A7, is in the fam-
ily of gamma-aminobutyric (GABA) transporters that includes two 
genes, SLC6A1 and SLC6A8, found to be differentially expressed in 
Anolis carolinensis populations responding to severe winter storms 
(Campbell-Staton et al., 2017). However, whether these genes are 
functionally relevant in different environments and whether meth-
ylation at these loci alters gene expression in A. cristatellus remain 
unknown. Nevertheless, strong relationships between outlier SMVs 
and climate variables and genome-wide evidence of IBE suggest that 
methylation is at least influenced by the environment if not a driver 
of local adaptation or phenotypic plasticity (Gugger et al., 2016; 
Keller et al., 2016; Wilschut, Oplaat, Snoek, Kirschner, & Verhoeven, 
2016).

5  | CONCLUSIONS

Isolation by environment is an important pattern of spatial genetic 
variation in a wide range of systems (Nanninga, Saenz-Agudelo, 
Manica, & Berumen, 2014; Sexton et al., 2014; Shafer & Wolf, 2013; 
Zhang, Wang, Comes, Peng, & Qiu, 2016), and studies of genetic 
IBE have provided valuable insights into the modes of divergence 
involved in early biological diversification (Sexton et al., 2014; Wang 
& Bradburd, 2014). Genetic IBE appears to be fairly commonplace 
in the Anolis radiations of the Greater and Lesser Antilles (Thorpe, 
Barlow, Malhotra, & Surget-Groba, 2015; Thorpe, Surget-Groba, & 
Johansson, 2008; Wang et al., 2013), and our results suggest that, in 
A. cristatellus, epigenetic IBE occurs independently of spatial genetic 
structure as well. Diversification in anoles is closely tied to ecologi-
cal variation (Glor, Kolbe, Powell, Larson, & Losos, 2003; Mahler, 
Revell, Glor, & Losos, 2010), and anoles are known to exhibit rapid 
genetic and phenotypic responses to changes in their biotic and abi-
otic environments (Campbell-Staton et al., 2017; Stuart et al., 2014). 
Our results showing strong relationships between epigenetic and 
environmental spatial structure in A. cristatellus raise the question 
of whether epigenetic variation contributes to adaptation and per-
sistence across diverse habitats in this and other systems. Future 
research characterizing the processes underlying epigenetic IBE will 
play an important role in advancing our understanding of the links 
between epigenetic variation and the environment.
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