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1  | INTRODUC TION

Inbreeding depression occurs when mating of related individuals 
generates offspring of reduced fitness compared with random mat‐
ing. This phenomenon is of central conservation concern because 
it can lead to reduced reproductive success and lowered offspring 
quality, increasing the risk of demographic decline especially in 

small, isolated populations (Charlesworth & Charlesworth, 1987; 
Frankham, 2010; Keller & Waller, 2002). Compared to population‐
level loss of genetic diversity, the effects of inbreeding depression 
can occur more rapidly following initial decline if overall relatedness 
increases (Amos & Balmford, 2001). Highly inbred individuals may 
also be less fit under environmental stress, when the expression of 
inbreeding depression is most severe (Armbruster & Reed, 2005; 
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Abstract
Inbreeding depression, the reduction in fitness due to mating of related individu‐
als, is of particular conservation concern in species with small, isolated populations. 
Although inbreeding depression is widespread in natural populations, long‐lived spe‐
cies may be buffered from its effects during population declines due to long gen‐
eration times and thus are less likely to have evolved mechanisms of inbreeding 
avoidance than species with shorter generation times. However, empirical evidence 
of the consequences of inbreeding in threatened, long‐lived species is limited. In this 
study, we leverage a well‐studied population of gopher tortoises, Gopherus polyphe‐
mus, to examine the role of inbreeding depression and the potential for behavioural 
inbreeding avoidance in a natural population of a long‐lived species. We tested the 
hypothesis that increased parental inbreeding leads to reduced hatching rates and 
offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We 
found that high parental relatedness results in offspring with lower quality and that 
high parental relatedness is correlated with reduced hatching success. However, we 
found that hatching success and offspring quality increase with maternal inbreeding, 
likely due to highly inbred females mating with more distantly related males. We did 
not find evidence for inbreeding avoidance in males and outbred females, suggesting 
sex‐specific evolutionary trade‐offs may have driven the evolution of mating behav‐
iour. Our results demonstrate inbreeding depression in a long‐lived species and that 
the evolution of inbreeding avoidance is shaped by multiple selective forces.

K E Y W O R D S

conservation genetics, gopher tortoise, Gopherus polyphemus, inbreeding avoidance, mating 
system, microsatellite, relatedness, reproductive success

mailto:
https://orcid.org/0000-0002-0298-0781
http://orcid.org/0000-0003-0367-9525
https://orcid.org/0000-0001-5107-6206
mailto:michael.yuan@berkeley.edu


     |  1153YUAN et Al.

Keller, Grant, Grant, Petren, & Merilä, 2002). Thus, the effects of 
inbreeding depression can exacerbate population declines initially 
caused by other factors (Frankham, 1995; O'Grady et al., 2006). 
However, increased homozygosity from inbreeding can also purge 
deleterious alleles, particularly lethal recessives, thereby increasing 
mean fitness of the population over generations (García‐Dorado, 
2012; Hedrick, 1994, 2002; Kirkpatrick & Jarne, 2000; Nei, 1968). 
Conversely, demographic declines can eventually lead to fixation 
of otherwise mildly or moderately deleterious alleles through drift 
(Bataillon & Kirkpatrick, 2000; Glémin, Ronfort, & Bataillon, 2003; 
Lynch, Conery, & Burger, 1995), at which point inbreeding depres‐
sion sensu stricto ceases to act despite retention of a high genetic 
load (Lohr & Haag, 2015).

Empirical evidence shows that inbreeding depression occurs 
broadly in natural populations (Frankham, 2010) and that species 
have evolved mechanisms to reduce inbreeding risk, including sex‐
biased dispersal (Perrin & Mazalov, 2000; Pusey, 1987), polygyny 
(Cornell & Tregenza, 2007; Pusey & Wolf, 1996) and behavioural kin 
avoidance (Archie et al., 2007; Lehmann & Perrin, 2003; Pusey & 
Wolf, 1996; but see Waser, Austad, & Keane, 1986). Yet, we still do 
not have a general understanding of the evolutionary response to 
inbreeding among animal lineages. Particularly, we do not know the 
specific consequences of inbreeding depression and mechanisms of 
inbreeding avoidance across different demographics and life histo‐
ries (but see Archie et al., 2007; Kuo & Janzen, 2004; Slate, Kruuk, 
Marshall, Pemberton, & Clutton‐Brock, 2000; Taylor et al., 2017).

Theory predicts that in long‐lived species, the effects of inbreed‐
ing following population declines will be delayed due to their longer 
generation times (Amos & Balmford, 2001), and empirical evidence 
has generally supported this hypothesis (Keane, Creel, & Waser, 
1996; Kuo & Janzen, 2004; Lippé, Dumont, & Bernatchez, 2006). 
Additionally, the evolution of behavioural inbreeding avoidance is 
rare in long‐lived species (Keane et al., 1996), likely because of re‐
laxed selection against inbreeding relative to the cost of inbreeding 
avoidance (Kokko & Ots, 2006; Waser et al., 1986). Long‐lived spe‐
cies often have smaller effective population sizes and longer gener‐
ation times limiting individual reproductive opportunities; thus, kin 
avoidance may limit otherwise valuable mating opportunities. Still, 
examples of pronounced inbreeding depression and the evolution of 
behavioural inbreeding avoidance have been observed in some long‐
lived species such as the little spotted kiwi (Apteryx owenii) (Taylor 
et al., 2017) and the African elephant (Loxodonta africana) (Archie 
et al., 2007). In this study, we take advantage of a well‐studied, semi‐
isolated population of gopher tortoises (Gopherus polyphemus) to ex‐
amine the role of inbreeding depression in natural populations of a 
long‐lived species.

Gopherus polyphemus is a large, fossorial tortoise native to 
the south‐eastern United States. The species is of conserva‐
tion concern owing to ongoing population declines, particu‐
larly in the western portion of its range (Diemer, 1986; McCoy, 
Mushinsky, & Lindzey, 2006). A phylogeographic break separating 
the western and eastern populations occurs at the Apalachicola–
Chattahoochee Rivers (Ennen et al., 2012; Gaillard et al., 2017). 

Previous studies have demonstrated that poor recruitment in 
western populations relative to eastern populations is largely 
attributed to lower hatching success even under controlled lab‐
oratory conditions (Epperson & Heise, 2003; Noel, Qualls, & 
Ennen, 2012). Population genetic studies have also shown that 
western populations have substantially lower genetic diversity 
(Ennen, Kreiser, & Qualls, 2010; Gaillard et al., 2017), which has 
led to the hypothesis that low hatching success is caused by in‐
breeding depression or the loss of genetic diversity more broadly 
(Noel et al., 2012). Because gopher tortoises exhibit low genetic 
diversity throughout the western part of their range, deleterious 
alleles associated with innate hatching rates are likely to be fixed 
in those populations. Thus, we can no longer effectively assess 
the effects of inbreeding on reproductive success during initial de‐
clines in western populations. However, several populations in the 
more genetically diverse eastern part of the range have been the 
focus of long‐term studies (e.g. Ashton, Engelhardt, & Branciforte, 
2008; Guyer, Johnson, & Hermann, 2012; Tuberville, Norton, 
Todd, & Spratt, 2008), providing an opportunity to test the hy‐
pothesis that inbreeding depression leads to reduced recruitment 
in G. polyphemus.

We studied an eastern population of gopher tortoises located 
at Archbold Biological Station (ABS) in south‐central Florida, which 
displays sufficient population‐level genetic diversity for calculation 
of individual inbreeding and relatedness between mate pairs (Yuan 
et al., 2015). Our goals are to determine (a) whether inbreeding, mea‐
sured as high parental relatedness, leads to reduced reproductive 
success, (b) whether inbreeding leads to reduced offspring quality 
as measured by size, body condition and locomotor performance, (c) 
whether maternal inbreeding and paternal inbreeding differentially 
affect male and female reproductive success and offspring quality, 
and (d) whether mate choice is a potential mechanism of inbreed‐
ing avoidance in gopher tortoises. We discuss our results in the 
context of the current understanding of mechanisms of inbreeding 
depression and evolution of inbreeding avoidance and highlight the 
relevance of our findings for conserving populations of long‐lived 
species.

2  | MATERIAL S AND METHODS

2.1 | Study population and sample collection

From 2012 to 2016, we annually surveyed a population of G. polyphe‐
mus at ABS, which is located at the southern end of the Lake Wales 
Ridge in Highlands County, Florida. Our study population inhabits 
a site within ABS known as Red Hill (RH), which consists of 7 ha of 
old‐field habitat surrounded by approximately 90 ha of southern 
ridge sandhill in varying stages of restoration from historical fire sup‐
pression (Ashton et al., 2008). The RH gopher tortoise population 
is the focus of an ongoing mark–recapture study initiated in 1967 
(Layne, 1989). All adult tortoises in the RH population are uniquely 
marked by drilling marginal scutes to allow for individual identifica‐
tion (Ernst, Hershey, & Barbour, 1974).
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We captured individuals by hand or by using Havahart live an‐
imal traps (Woodstream Corporation) placed at burrow entrances. 
At first capture, we nondestructively collected 0.5–1.0 ml of 
blood in lysis buffer (100 mM Tris Base, 100 mM EDTA, 150 mM 
NaCl, 1% SDS) from all adult tortoises (N = 114) via the subcar‐
apacial vein (Hernandez‐Divers, Hernandez‐Divers, & Wyneken, 
2002). We sexed each individual using secondary sexual charac‐
teristics (McRae, Landers, & Cleveland, 1981) or penis extrusion. 
Additionally, we measured mass (kg), straight carapace length 
(mm), straight carapace width (mm), and shell height (mm) at each 
capture.

During 2015–2016, we surveyed burrow aprons for nests and 
protected them in situ until late in development (White, Rothermel, 
Zamudio, & Tuberville, 2018). We then excavated all detected nests 
(N = 31), noted the total number of eggs in each clutch and artifi‐
cially incubated all clutches at 29 ± 1°C and ~ 80% humidity for the 
remainder of their development. Incubation allowed us to examine 
the innate viability of each clutch while preventing total clutch fail‐
ure due to predation and controlling for potential effects of environ‐
mental conditions in later stages. We collected blood samples from 
hatchlings and tissue from inviable eggs for genotyping (N = 220). 
We measured the mass (g), straight carapace length (mm) and 
straight carapace width (mm) of each hatchling (N = 194) following 
full absorption of the yolk sac. Hatchlings were typically kept in the 
laboratory for 1–2 days following completion of data collection, then 
released either at their natal burrow, if it was unoccupied by an adult 
tortoise or potential predators, or at the nearest unoccupied burrow 
if their natal burrow was unsuitable.

2.2 | Hatchling locomotor performance

In 2016, we housed hatchlings for up to 10 days post‐hatching to 
conduct locomotor trials as an offspring fitness proxy. Locomotor 
performance trials have been used in several reptile systems in‐
cluding G. polyphemus as a fitness proxy (Demuth, 2001; Elphick 
& Shine, 1998). We conducted three locomotor performance trials 
for each hatchling (N = 87) on days 4, 5 and 6 after yolk absorp‐
tion. Performance tracks consisted of a metre‐long, sand‐covered 
wooden track terminating in a cardboard shelter. We mounted a 
camcorder (JVC HD Everio, GZ‐HM440) directly above the track to 
videorecord each trial. Hatchlings were acclimated to ambient tem‐
perature (29°–34°C) for at least 30 min prior to performance trials. 
We placed hatchlings on the wooden track and gently tapped the 
posterior carapace at regular intervals to motivate them to move 
along the track. We re‐randomized the order in which hatchlings 
were tested on each day of trials. For each trial, we recorded latency 
time (the time from release to first forward movement), split times 
for each 0.1‐m interval, and sprint speed (calculated from the aver‐
age of an individual's 0.1 m split times) from videos using Kinovea 
(https ://www.kinov ea.org/). All times were recorded to the nearest 
0.1 second and averaged across successful trials. We discarded all 
trials in which the tortoise ceased forward progress for longer than 
5 s or turned around.

2.3 | Microsatellite analysis

We extracted whole genomic DNA using the DNeasy Blood and 
Tissue Kit (Qiagen). For each individual (i.e. adult, hatchling and in‐
viable egg), we PCR‐amplified 15 previously published microsatel‐
lite markers (Kreiser, Ennen, Gaillard, & Qualls, 2013; Schwartz, 
Osentoski, Lamb, & Karl, 2003; Tuberville, Norton, Waffa, Hagen, 
& Glenn, 2011) modified following Yuan et al. (2015) (Table S1). We 
conducted PCRs using a three‐primer system (Waldbieser, Quiniou, 
& Karsi, 2003) consisting of locus‐specific primer pairs and a third 
fluorescently tagged universal primer. In brief, we attached a 5′‐
CGAGTTTTCCCAGTCACGAC‐3′ tag to the 3′ end of one micros‐
atellite primer in each pair to allow for annealing of a fluorescently 
tagged universal primer. Fluorescently tagged universal primers were 
5′‐tagged with either VIC, NED, PET or 6FAM. We also attached a 5′‐
GTTT‐3′ tag to the 5′ end of each untagged primer to reduce stutter.

We performed all PCRs in 10 μl reactions including 1 μl template 
DNA (1–10 ng), 1X PCR buffer, 1.5 mM MgCl2, 0.1 μM dNTPS, 0.2 μM 
each of untagged and universal fluorescent primers, 0.4 μM tagged 
primer and 0.25 units of Taq polymerase (Roche). PCRs consisted of 
an initial denaturing temperature of 94°C for 5 min, followed by 35 
cycles of denaturing at 94°C for 1 min, locus‐specific annealing tem‐
perature for 1 min (Table S1), extension at 72°C for 1 min and a final 
extension at 72°C for 5 min. We conducted genotyping in pools by 
mixing 1 μl of pooled PCR product with 18.85 μl Hi‐Di™ formamide 
and 0.15 μl GeneScan™ 500 LIZ™ Size Standard (Applied Biosystems). 
We genotyped samples using an ABI 3730xl DNA Analyzer (Applied 
Biosystems) and called alleles using GeneMarker v2.4.0 (SoftGenetics).

2.4 | Parentage assignment and 
inbreeding estimation

For each pair of tortoises, we calculated Wang's relatedness estima‐
tor (W) in COANCESTRY (Wang, 2011). Wang's relatedness estima‐
tor is robust to smaller sample sizes, highly polymorphic loci, and 
sampling bias in reference populations compared to alternative re‐
latedness metrics (Wang, 2002). We also estimated inbreeding coef‐
ficients (F) for all adult individuals and hatchlings using the Ritland 
moment estimator (Ritland, 1996). Variance in inbreeding is neces‐
sary for heterozygosity‐fitness correlations to arise (Szulkin, Bierne, 
& David, 2010). Therefore, we tested for significant disequilibrium 
(g2), a measure of variance in inbreeding, following David, Pujol, Viard, 
Castella, and Goudet (2007). For each clutch, we assigned parentage 
from offspring genotypes using a maximum‐likelihood approach in 
COLONY (Jones & Wang, 2010) and a pairwise likelihood approach in 
CERVUS (Kalinowski, Taper, & Marshall, 2007; see White et al., 2018). 
We provided all genotyped adult tortoises as potential parents and 
allowed for assignment of unsampled individuals as parents.

2.5 | Data analyses

We defined innate clutch viability as the proportion of incubated 
eggs that successfully hatched. We excluded all clutches in which 

https://www.kinovea.org/
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one or both parents were assigned to an unsampled individual or 
in which less than 70% of eggs/hatchlings were successfully geno‐
typed. In clutches with greater than 70%, but less than 100%, gen‐
otyping success, we assigned fathers to individuals that failed to 
genotype based on the sire or sires attributed to the remainder of 
the clutch. If a single sire was detected, we assigned all unknown 
eggs to that sire. In clutches with multiple paternity, we assigned 
partial paternity to each father based on the proportion of the re‐
mainder of the clutch sired (i.e. if a father sired 50% of a clutch, he 
was assigned 0.5 of the un‐genotyped individual).

For parental W analyses, we divided clutches by unique mating 
pairs. For clutches in which assigned parents were identical between 
years, we averaged clutch size and clutch viability between years 
(after testing for significant differences in clutch viability and clutch 
size between years) to avoid pseudoreplication. For paternal and ma‐
ternal F, we combined all assigned offspring across clutches for each 
parent to generate an overall clutch viability. To test for overdisper‐
sion in clutch size and clutch viability, we compared the observed and 
theoretical variances to a chi‐square distribution (Cameron & Trivedi, 
1990). We tested the correlation of clutch viability with parental relat‐
edness as well as maternal and paternal inbreeding coefficients using 
general linear models (GLM) with quasibinomial distributions to ac‐
count for overdispersion.

Because clutch size is known to correlate with female body size 
(Ashton, Burke, & Layne, 2007; Landers, Garner, & McRae, 1980; 
Rothermel & Castellón, 2014), we included straight carapace length 
as a covariate when examining the relationship between clutch size 
and maternal inbreeding coefficient using a GLM with a Poisson dis‐
tribution. To determine whether tortoises used mate choice to mit‐
igate inbreeding, we tested the relationship between maternal and 
paternal inbreeding coefficients and parental pairwise relatedness 
across breeding pairs by simple linear regression. We also tested 
whether pairwise relatedness in our sample of inbred (W < 0) and 
outbred (W > 0) breeding pairs was statistically different than the 
average population‐level relatedness. Due to the pairwise nature of 
relatedness, we tested for significance using permutation tests in 

which a null distribution was generated by permuting relatedness 
indices across all possible dyads 999 times.

We used residuals from a regression of log mass on log cara‐
pace length as the measure of hatchling body condition, a proxy 
for physiological state (Lagarde et al., 2001). Additionally, we 
corrected sprint speed for body size by retaining residuals after 
regressing log sprint speed on log carapace length. We used lin‐
ear mixed models to test for the influence of inbreeding on our 
measures of offspring quality. For each model, we tested one of 
four dependent variables (log carapace length, body condition, 
log latency time, and average residual sprint speed of hatchlings) 
against all independent variables (parental relatedness and off‐
spring, paternal, and maternal inbreeding coefficients). Parent 
IDs were included as crossed random factors to account for the 
effect of shared parentage. To assess potential multicollinearity, 
we calculated variance inflation factors (VIFs) for all independent 
variables. All data analyses were conducted in R v3.5.1 (R Core 
Team, 2018).

3  | RESULTS

We located clutches for 15 females in 2015 and 16 females in 2016, 
with nine females represented in both years. Clutches from seven 
females were entirely sired by the same male in both years. Two fe‐
males produced multiply sired clutches in both years; one female's 
clutches were sired by the same two males in both years, whereas 
the other female's clutches only shared one sire between years. 
Thus, for repeated multiply sired clutches produced by the same fe‐
male, at least one father was identical between years. The remaining 
13 females (six in 2015 and seven in 2016) for which we recovered 
nests were unique between years. Four clutches (two in 2015 and 
two in 2016) were excluded from analysis due to low genotyping 
coverage.

Clutch viability ranged from 0.33 to 1.0 with a median of 0.9, and 
clutch size ranged from 1 to 15 eggs with a median of seven eggs across 

F I G U R E  1   (a) Relationship between 
pairwise parental relatedness and clutch 
viability. (b) Relationship between 
maternal inbreeding and clutch viability. In 
both a and b, lines depict predicted values 
from the fitted GLM with a quasibinomial 
distribution
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unique mate pairs. Overall clutch viability was 81.7% for incubated 
eggs. Clutch viability (chi‐squared test: all p > .05) and size (pairwise 
t test: all p > .05) did not differ between years in clutches with iden‐
tical parents. We found that innate clutch viability was overdispersed 
(p < .001), whereas clutch size was not (p = .135). We found a significant 
positive correlation between log clutch size and log maternal body size 
(F = 19.037, R2 = .515, p < .001). Additionally, we found that identity 
disequilibrium was significantly greater than zero (ĝ2 = 0.011, expected 
bias = 3.43 × 10−5, SD = 0.004, p < .001), indicating that heterozy‐
gosity‐fitness correlation can arise in this system. We then detected 
a significantly positive correlation between maternal inbreeding and 
clutch viability (deviance = 1.200, df = 17, p = .007), as well as a margin‐
ally significant negative correlation between parental relatedness and 
clutch viability (deviance = 0.548, df = 22, p = .072; Figure 1). However, 
paternal inbreeding was not correlated with clutch viability, nor were 
maternal inbreeding coefficients correlated with clutch size (p > .05).

We found that maternal inbreeding was negatively correlated 
with parental relatedness across clutches (F1,36 = 13.754, R2 = .276, 
p < .001; Figure 2a), whereas paternal inbreeding was not correlated 
with parental relatedness (F1,35 = 0.120, R2 = .005, p = .682). The re‐
latedness of mating pairs did not differ from average population‐level 
relatedness (permutations = 999, p = .850). However, relatedness of 

mating pairs with inbred females was significantly lower than relat‐
edness of mating pairs with outbred females (permutations = 999, 
p = .006; Figure 2b).

We discarded 16 failed locomotor trials. Only a single individual 
failed to complete at least one successful trial and was completely 
removed from the dataset. Six additional hatchlings were excluded 
because either they or their parents could not be genotyped. All in‐
dependent variables had VIFs less than 2; thus, bias due to multi‐
collinearity was minimal in our analyses (Table S2). We found that 
mean latency time from locomotor trials was negatively correlated 
with maternal inbreeding, but was not correlated with paternal in‐
breeding, offspring inbreeding or parental relatedness (Figures 3 
and S1; Table 1). Mean sprint speed was positively correlated with 
maternal inbreeding indicating hatchlings with more inbred mothers 
moved faster in addition to having faster reaction times. Hatchling 
body condition was also positively correlated with maternal in‐
breeding and parental relatedness. Additionally, hatchling size (i.e. 
log hatchling straight carapace length) was negatively correlated 
with parental relatedness. Finally, we found that neither offspring 
inbreeding nor paternal inbreeding was correlated with any metric 
of individual offspring quality or locomotor performance (Figure S2; 
Tables 1 and S3).

F I G U R E  2   (a) Relationship between 
maternal Ritland moment estimator of 
inbreeding (F) and Wang's relatedness 
(W) for all mating pairs in which both 
parents were sampled. Linear regression 
is depicted as a hashed line (R2 = .276, 
p < .001). (b) Box plots of pairwise 
relatedness for mate pairs with inbred 
females (maternal F < 0), mate pairs with 
outbred females (maternal F > 0) and all 
possible other pairs. Significantly different 
mean pairwise relatedness is indicated 
(p < .05*, p < .01**, p < .001***)
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TA B L E  1   The chi‐square statistics, degrees of freedom and p‐values from linear mixed models testing the correlation of offspring 
inbreeding, parental inbreeding and parental relatedness on hatchling quality and locomotor performance metrics

 N

Offspring inbreeding Paternal inbreeding (F) Maternal inbreeding (F) Parental relatedness (W)

χ2 df p χ2 df p χ2 df p χ2 df p

Body condition 188 0.246 4, 183 .620 0.005 4, 183 .945 6.385 4, 183 .039 (+) 4.242 4, 183 .012 (+)

Carapace length 188 0.361 4, 183 .548 1.752 4, 183 .186 0.512 4, 183 .474 7.692 4, 183 .006 (−)

Sprint speed 86 0.749 4, 81 .387 0.057 4, 81 .811 5.247 4, 81 .022 (+) 1.203 4, 81 .273

Latency time 86 0.478 4, 81 .489 0.656 4, 81 .418 5.288 4, 81 .021 (−) 0.115 4, 81 .735

Note: F is the Ritland moment estimator of inbreeding, and W is Wang's relatedness estimator. Significant p‐values are denoted by bolded italics with 
the direction of effect in parentheses.
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4  | DISCUSSION

4.1 | Maternal inbreeding effects on offspring 
quality

Contrary to expectations, highly inbred females in our popula‐
tion had greater innate clutch viability and more robust offspring 
with greater locomotor performance and higher body condition  
(Figure 1 and 3; Table 1). We propose that this pattern may be driven 
by mate choice to mitigate inbreeding because parental pairwise re‐
latedness was inversely related to maternal inbreeding (Figure 2) and 
parental relatedness was a major predictor of inbreeding depression 
for both reproductive and offspring traits (Figures 1 and 3e; Table 1). 
Individual inbreeding effects are often reduced in offspring if par‐
ents are distantly related (Charlesworth & Charlesworth, 1987). This 
is because deleterious recessive alleles are likely to become masked 
in offspring in these instances. Therefore, mate choice can strongly 
mitigate the risk of inbreeding depression (Brown, 1997). Mate 
choice plays an important role in the breeding system of gopher 
tortoises. Females are not universally receptive to male courtship, 
and forced copulation is unlikely given female‐biased sexual size 
dimorphism (McRae et al., 1981). Additionally, females are courted 
regularly by multiple males (Boglioli, Guyer, Michener, & Douglas, 
2003) and initiate social interactions with males, including moving to 
co‐occupy burrows with males (Guyer, Hermann, & Johnson, 2014; 
Johnson, Guyer, Hermann, Eubanks, & Michener, 2009). Female go‐
pher tortoises in a translocated population also preferred males with 
longer‐term residency over males introduced to the population more 
recently, indicating individual‐level recognition (Tuberville et al., 
2011). Finally, tortoises within the genus Gopherus have chin glands 
whose secretions are used in conspecific recognition by both male 
and female tortoises (Alberts, Rostal, & Lance, 1994; Landers et al., 
1980), which could also potentially facilitate kin avoidance during 
courtship.

The apparent kin avoidance in our study population was limited 
to female tortoises. These results are consistent with theory, be‐
cause the costs of inbreeding and subsequent selection for inbreed‐
ing avoidance are greater in females than males, as females invest 
more in reproduction per offspring (Brown, 1997; Lehmann & Perrin, 
2003; Pizzari, Lø, & Cornwallis, 2004; Waser et al., 1986). Although 
the relative costs of inbreeding between sexes may be lessened by 
the occurrence of polyandry (Newcomer, Zeh, & Zeh, 1999; Stockley, 
Searle, MacDonald, & Jones, 1993), in tortoises offspring produc‐
tion is still severely limited in females relative to polygynous males 
(Landers et al., 1980; White et al., 2018) and per‐gamete resource 
allocation remains greater in eggs than sperm (Bateman, 1948; 
Hayward & Gillooly, 2011). Thus, the fitness costs of inbreeding 
should still be higher in females despite polyandry.

Apparent kin avoidance in female gopher tortoises also appeared 
to be limited to more inbred females. In general, inbred individuals 
would be expected to share fewer alleles with a partner selected at 
random. However, this alone does not adequately explain our ob‐
served mating patterns because this expectation should hold for 
both sexes, yet we found no evidence of inbred males partnering 
with less‐related females. Likewise, although mate choice against 
outbreeding depression could lead to the kind of correlation we 
observed (Luo et al., 2015; Palmer & Edmands, 2000), we did not 
see evidence of outbreeding depression in traits measured for this 
study. We hypothesize the observed relationship between maternal 
inbreeding and parental pairwise relatedness may result from trade‐
offs between kin avoidance and inbreeding tolerance. Kin avoidance 
has been hypothesized to be costly due to reduced availability of po‐
tential mates and increased energetic costs required for reproduc‐
tion (Waser et al., 1986). If trade‐offs between kin avoidance and 
inbreeding tolerance exist, then in highly inbred individuals the cost 
of inbreeding tolerance may outweigh the cost of kin avoidance. This 
hypothesis would require the ability for individuals to determine their 
degree of inbreeding. Whether such a mechanism exists is unclear.

F I G U R E  3   Partial regression plots for the effect of maternal inbreeding on (a) straight carapace length, (b) body condition index, (c) 
average sprint speed and (d) latency time. (e) Partial regression for the effect of parental relatedness on straight carapace length. In all plots, 
Y‐axes are residuals of each model with the independent variable of interest removed and X‐axes are residuals of the independent variable of 
interest regressed against all other independent variables
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The potential role of genetic purging should also be considered 
as an alternative explanation for the observed correlation between 
maternal inbreeding and reproductive fitness. That is, more inbred 
females might have greater clutch viability and higher offspring 
quality because individuals with deleterious alleles are less likely 
to survive to reproductive maturity. Stronger selection against in‐
bred individuals relative to noninbred individuals could lead to those 
inbred individuals that reach reproductive age being fitter overall 
(García‐Dorado, 2012; Hedrick, 1994; Kirkpatrick & Jarne, 2000). 
However, genetic purging does not explain why highly inbred fe‐
males, but not highly inbred males, tend to mate with more unre‐
lated partners. Nor does genetic purging directly account for the 
relationship between mate‐pair relatedness and clutch viability. Still, 
we cannot fully discount genetic purging as a potential mechanism. 
Further studies will be required to fully differentiate between these 
alternative hypotheses.

We have shown a cost to inbreeding in both innate clutch vi‐
ability (Figure 1a) and offspring quality in controlled environments 
(Table 1). Previous work has also demonstrated mechanisms for 
conspecific recognition in Gopherus tortoises (Alberts et al., 1994; 
Guyer et al., 2014; Landers et al., 1980; Tuberville et al., 2011). Yet, 
because our findings are based on genotyping of resulting offspring, 
they are influenced by both mate choice behaviour and post‐copu‐
latory mechanisms affecting fertilization. Direct studies of mating 
behaviours, sperm storage, and sperm use are needed to clarify the 
role of kin avoidance in female mate choice. Still, our data are con‐
sistent with female mate choice as a potential driver of inbreeding 
avoidance in gopher tortoises, contrary to the observation that long 
generation times often reduce selection for kin avoidance (Keane 
et al., 1996; Lippé et al., 2006; Waser et al., 1986).

4.2 | Inbreeding depression in a declining, long‐
lived species

Although inbreeding can have morphological consequences, in most 
cases inbreeding depression exerts stronger selection on life‐his‐
tory traits directly related to fitness compared with indirectly re‐
lated morphological traits (DeRose & Roff, 1999). However, while we 
did observe evidence for reduced clutch viability due to inbreeding 
(Figure 1), our data also show a strong signal of inbreeding depres‐
sion in hatchling carapace length. This reduction in hatchling body 
size potentially has negative fitness consequences. Mortality is high‐
est in juvenile gopher tortoises, with studies reporting upwards of 
94% mortality during the first year (Alford, 1980). Due to low adult 
mortality, the consequences of inbreeding in adulthood are likely to 
be primarily reproductive. Thus, fitness consequences of decreased 
body size and condition are likely more pronounced in hatchlings 
than adults (O'Brien, Robert, & Tiandray, 2005). Body size in par‐
ticular is a major predictor of predation pressure in hatchling turtles. 
Larger bodied individuals are better able to avoid predation and sur‐
vive to adulthood (Janzen, 1993; Janzen, Tucker, & Paukstis, 2000). 
In the closely related desert tortoise, Gopherus agassizii, hatchlings 
of smaller size and decreased body condition also have increased 

mortality attributed to reduced water and energy reserves (Nafus, 
Todd, Buhlmann, & Tuberville, 2015). Therefore, resource storage, 
as it relates to body size and condition, may also be important for 
survival of hatchling G. polyphemus, particularly during the southern 
Florida dry season.

Because juvenile tortoises are vulnerable to a wider range of 
predators than adults, due to their smaller and structurally weaker 
shells, their primary mechanism of predator avoidance is crypsis or 
sheltering in burrows (Butler & Sowell, 1996; Epperson & Heise, 
2003; Smith, Steen, Conner, & Rutledge, 2013). Therefore, locomotor 
performance trials are pertinent to the ability of hatchling tortoises 
to escape predation by fleeing into their burrows. Additionally, go‐
pher tortoises utilize their burrows for thermoregulation (Douglass 
& Layne, 1978). If poor locomotor performance is linked to poor 
digging performance, tortoises may not only be at greater risk of 
predation, but also reduced thermoregulatory efficiency due to in‐
efficient burrow construction. We did not find strong evidence for 
inbreeding depression in locomotor traits (Table 1). However, as with 
other traits, the relationship with maternal inbreeding was contrary 
to expectations. More inbred mothers had faster and more respon‐
sive offspring. Nevertheless, the relationship between laboratory‐
measured performance and survival in natural populations is not 
always straightforward (Husak, Fox, & Schwenk, 2006; Irschick & 
Losos, 1998; Miles, 2004) and has not yet been adequately assessed 
in this species. Beyond the reduction in clutch viability and hatchling 
size demonstrated in this study, inbreeding has also been previously 
linked to changes in gut microbial community composition (Yuan 
et al., 2015) and shell deformities (Velo‐Antón, Becker, & Cordero‐
Rivera, 2011) in tortoises.

The broad fitness consequences of inbreeding depression in 
G. polyphemus have significant conservation implications. Our data 
are consistent with the hypothesis that inbreeding depression can 
lead to low recruitment in G. polyphemus (Ennen et al., 2010; Noel 
et al., 2012) (Figure 1). Notably, our results support the hypothesis 
that western populations with low genetic diversity may be expe‐
riencing low hatching success in part due to highly related mating 
pairs. Although western populations may not be currently expe‐
riencing inbreeding depression sensu stricto if deleterious alleles 
associated with reduced clutch viability are now fixed, our demon‐
stration of inbreeding depression in a more genetically diverse pop‐
ulation suggests inbreeding depression may have exacerbated initial 
population declines. Nest protection and controlled incubation of 
late‐stage eggs did not allow us to fully examine the potential con‐
text dependence of inbreeding effects under natural conditions. 
However, our approach likely provided a conservative test of the 
negative effects of high parental relatedness, given the influence of 
inbreeding is often stronger during environmental stress (Jiménez, 
Hughes, Alaks, Graham, & Lacy, 1994).

Despite potential behavioural inbreeding avoidance in our Red 
Hill population and multiple paternity in gopher tortoises (Moon, 
McCoy, Mushinsky, & Karl, 2006; Tuberville et al., 2011; White et al., 
2018), uniformly low genetic diversity likely means mating of related 
individuals is unavoidable in western populations compared to larger, 
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more diverse eastern populations (Ennen et al., 2010). In the light 
of continued population declines throughout their range (Diemer, 
1986; McCoy & Mushinsky, 1992; McCoy et al., 2006), our results 
suggest that the long‐term viability of western gopher tortoise pop‐
ulations will likely require intervention to increase genetic diversity 
(e.g. Whiteley, Fitzpatrick, Funk, & Tallmon, 2015). However, genetic 
rescue efforts may be dampened by lower reproductive success 
in recently translocated compared to previously established males 
(Mulder et al., 2017; Tuberville et al., 2011). Additionally, the west‐
ern populations of G. polyphemus have a unique phylogeographic 
history (Gaillard et al., 2017; Osentoski & Lamb, 1995), and it may 
be desirable to maintain this lineage independent from eastern pop‐
ulations (Crandall, Bininda‐Emonds, Mace, & Wayne, 2000; Petit, El 
Mousadik, & Pons, 1998).

4.3 | Conclusion

We show that inbreeding depression occurs in G. polyphemus and 
may explain poor recruitment observed in low‐diversity populations 
compared with high‐diversity populations. However, highly inbred 
parents do not inevitably produce reduced‐quality offspring. Rather, 
our data suggest that highly inbred female tortoises in our study pop‐
ulation chose less‐related mates, which may counteract inbreeding 
depression. In fact, distantly related pairs had higher clutch viability 
and more robust offspring even when females were highly inbred. 
We found no evidence of inbreeding avoidance through mate choice 
in males or in outbred females, suggesting evolutionary trade‐offs 
and sex‐specific selective pressures have driven the evolution of mat‐
ing behaviour. Our results show that the consequences of inbreed‐
ing depression can be multifaceted, and the evolution of inbreeding 
avoidance is driven by the interplay of differing selective pressures.
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